Abstract

Service monitoring in federated clouds generates large scale QoS time series data with various unknown, frequent and abnormal patterns. This could be associated with inaccurate resource provisioning and avoid violations through predictive and preventive actions. A sufficient intelligence in the form of expert system for decision support is needed in such situations. Therefore, the main challenge here is to efficiently discover unknown frequent and abnormal patterns from QoS time series data of federated clouds. On the other hand, QoS time series data in federated clouds is unlabeled and consists of frequent and abnormal structures. Studies showed that clustering is the most common and efficient method to discover interesting patterns and structures from unlabeled data. But, clustering is normally associated with time overhead that should be optimized as well as accuracy issues mainly in connection with convergence and finding an optimum number of clusters. This work proposes a new genetic based clustering algorithm that shows better accuracy and speed in comparison to state-of-the-art methods. Furthermore, the proposed algorithm can find the optimum number of clusters concurrently with the clustering itself. Achieved accuracy and convergence of the proposed method in the experimental results assure its use in expert systems, mainly for resource provisioning and further autonomous decision making situations in federated clouds. In addition to the scientific impact of this paper, the proposed method can be used by federated cloud service providers in practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.