Abstract

We investigate the clustering dynamics of a network of inhibitory interneurons, where each neuron is connected to some set of its neighbors. We use phase model analysis to study the existence and stability of cluster solutions. In particular, we describe cluster solutions which exist for any type of oscillator, coupling and connectivity. We derive conditions for the stability of these solutions in the case where each neuron is coupled to its two nearest neighbors on each side. We apply our analysis to show that changing the connection weights in the network can change the stability of solutions in the inhibitory network. Numerical simulations of the full network model confirm and supplement our theoretical analysis. Our results support the hypothesis that cluster solutions may be related to the formation of neural assemblies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.