Abstract

Abstract Accurate and effective prediction of mutation-induced protein energy change remains a great challenge and of great interest in computational biology. However, high resource consumption and insufficient structural information of proteins severely limit the experimental techniques and structure-based prediction methods. Here, we design a structure-independent protocol to accurately and effectively predict the mutation-induced protein folding free energy change with only sequence, physicochemical and evolutionary features. The proposed clustered tree regression protocol is capable of effectively exploiting the inherent data patterns by integrating unsupervised feature clustering by K-means and supervised tree regression using XGBoost, and thus enabling fast and accurate protein predictions with different mutations, with an average Pearson correlation coefficient of 0.83 and an average root-mean-square error of 0.94kcal/mol. The proposed sequence-based method not only eliminates the dependence on protein structures, but also has potential applications in protein predictions with rare structural information.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call