Abstract

The aim of this paper is to improve the classification performance based on the multiclass imbalanced datasets. In this paper, we introduce a new resampling approach based on Clustering with sampling for Multiclass Imbalanced classification using Ensemble (C-MIEN). C-MIEN uses the clustering approach to create a new training set for each cluster. The new training sets consist of the new label of instances with similar characteristics. This step is applied to reduce the number of classes then the complexity problem can be easily solved by C-MIEN. After that, we apply two resampling techniques (oversampling and undersampling) to rebalance the class distribution. Finally, the class distribution of each training set is balanced and ensemble approaches are used to combine the models obtained with the proposed method through majority vote. Moreover, we carefully design the experiments and analyze the behavior of C-MIEN with different parameters (imbalance ratio and number of classifiers). The experimental results show that C-MIEN achieved higher performance than state-of-the-art methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.