Abstract

We use state-of-the-art numerical simulations to explore the observability and the expected physical properties of the progenitors of the local group galaxies at z=6-8, within 1 billion years of the big bang. We find that the most massive progenitors of the Milky Way (MW) and Andromeda (M31) at z=6 and 7 are predicted to have absolute UV continuum magnitudes between -17 and -18, suggesting that their analogues lie close to the detection limits of the deepest near-infrared surveys conducted to date (i.e. HST WFC3/IR UDF12). This in turn confirms that the majority of currently known z=6-8 galaxies are expected to be the seeds of present-day galaxies which are more massive than L* spirals. We also discuss the properties of the local-group progenitors at these early epochs, extending down to absolute magnitudes M_UV = -13. The most massive MW/M31 progenitors at z=7 have stellar masses of about 10^7.5-8 solar masses, stellar metallicities between 3 and 6% of the solar value, and predicted observed UV continuum slopes between -2.4 and -2.5.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.