Abstract

Safe exploration and production of pre-salt (or subsalt) hydrocarbons require that drilling operations be optimized. We introduce analytical models of wellbore closure, accounting for variations in both the wellbore net pressure and far-field flow rate of an autochthonous or allochthonous salt sheet penetrated by the wellbore. We demonstrate how closure rates of such a wellbore evolve for increasingly stronger Rankine flow. For high viscosity salt (?10^18 Pa s) the wellbore closes by a pure sink flow without any Rankine shift from its vertical trajectory path. For low viscosity salt (?10^16 Pa s) Rankine flow dominates.Wellbore closure in salt sheets may vary within the same wellbore due to differential tectonic creep rates at different depths. Mitigation of wellbore closure by, for example, reaming, jarring, brine solution and thermal control, is most effective if spatial variation in closure rates is understood and quantified. Evaluation of wellbore closure rates due to salt creep should be customarily included in wellbore stability analyses before drilling and during well monitoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.