Abstract

Superconducting properties change in confined geometries. Here we study the effects of strong confinement in nanosized Pb islands on Si(111) $7\ifmmode\times\else\texttimes\fi{}7$. Small hexagonal islands with diameters less than 50 nm and a uniform height of seven atomic layers are formed by depositing Pb at low temperature and annealing at 300 K. We measure the tunneling spectra of individual Pb nanoislands using a low-temperature scanning tunneling microscope operated at 0.6 K and follow the narrowing of the superconducting gap as a function of magnetic field. We find the critical magnetic field, at which the superconducting gap vanishes, reaches several Tesla, which represents a greater than 50-fold enhancement compared to the bulk value. By independently measuring the size of the superconducting gap, and the critical magnetic field that quenches superconductivity for a range of nanoislands, we can correlate these two fundamental parameters and estimate the maximal achievable critical field for 7 ML Pb nanoislands to be 7 T.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.