Abstract

Multiple poly- and perfluoroalkyl substances (PFASs) are present in aqueous film-forming foams (AFFF) used for firefighting activities. Currently, no single analytical technique provides a complete accounting of total PFASs or total organofluorine content in AFFF-contaminated samples. To provide insight into the performance of existing methods, we compared ten previously described PFAS measurement techniques. In AFFF-amended tap water, US EPA Methods 533 and 1633, adsorbable organic fluorine with particle induced gamma emission spectroscopy (AOF-PIGE) and fluorine-19 nuclear magnetic resonance (19F NMR) provided similar estimates of total fluorine. The total oxidizable precursor (TOP) assay, suspect screening, and adsorbable organic fluorine with combustion ion chromatography (AOF-CIC) yielded estimates of total organic fluorine that were about two to three times higher than the other techniques. Proximate to AFFF sources, suspect screening and modified EPA Method 1633 yielded higher results, while the TOP assay results were between the other two sets of analyses. Further from sources, suspect screening, modified EPA Method 1633, and the TOP assay yielded similar results that were 4-fold higher than results from targeted quantification methods, such as EPA Method 1633. These results are consistent with expectations about PFAS behavior and inform the selection of analytical techniques used for PFAS contamination characterization efforts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.