Abstract
This paper presents an extension to PathFinder FPGA routing algorithm, which enables it to deliver FPGA designs free from risks of crosstalk attacks. Crosstalk side-channel attacks are a real threat in large designs assembled from various IPs, where some IPs are provided by trusted and some by untrusted sources. It suffices that a ring-oscillator based sensor is conveniently routed next to a signal that carries secret information (for instance, a cryptographic key), for this information to possibly get leaked. To address this security concern, we apply several different strategies and evaluate them on benchmark circuits from Verilog-to-Routing tool suite. Our experiments show that, for a quite conservative scenario where 10-20% of all design nets are carrying sensitive information, the crosstalk-attack-aware router ensures that no information leaks at a very small penalty: 1.58-7.69% increase in minimum routing channel width and 0.12-1.18% increase in critical path delay, on average. In comparison, in an AES-128 cryptographic core, less than 5% of nets carry the key or the intermediate state values of interest to an attacker, making it highly likely that the overhead for obtaining a secure design is, in practice, even smaller.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.