Abstract
Silicon nanocrystals (Si-ncs) of sufficiently small size, emitting luminescence at short wavelengths (which implies the occurrence of quasi-direct radiative recombination) and being densely packed in a planar thin film (which ensures short stimulated emission (StE) lifetime) can become a suitable active material for the observation of StE in the visible region. In this paper, we describe a fabrication method of nanostructures of this type, based on enhanced electrochemical etching of silicon wafers followed by embedding porous silicon grains into an SiO2 matrix. Further, we report on time-resolved photoluminescence spectra and optical gain measurements performed via the variable-stripe-length and the shifting-excitation-spot methods. Finally, we realize a transient wavelength-tunable distributed-feedback-laser (DFL) cavity with inserted densely packed Si-ncs as an active medium. We demonstrate an increase in emission intensity on the blue emission wing (below 600 nm), which is spectrally shifting in accordance with the cavity tuning. We also present a mathematical model of the DFL cavity enabling us to simulate the experimental observations and analyze a realistic prospect for achieving laser action in an ensemble of Si-ncs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.