Abstract

Reverse logistics (RL) and closed-loop supply chains (CLSC) have recently received enormous attention due to growing environmental concerns and legislations coupled with the lucrative business potential. The main purpose of this paper is to develop a closed-loop supply chain network design model capable of recovering glass containers. A multi-period multi-product mixed-integer linear programming model is proposed to maximize profit. The strategic design of the supply chain is dealt simultaneously with the tactical planning of its operation, which covers procurement, production, storage, distribution, take-back, reprocessing, reuse, and recycling. To illustrate the efficiency and practicability of the model, it is applied to a real-world case of beverage supply chain where the glass containers are either re-used or recycled into their original form, as raw materials. Finally, sensitivity analyses, from a financial perspective, have been conducted to reveal the determinants of profitable product recovery and grasp their managerial implications. The analyses showed that return rate and return acquisition cost have determinant impact on the economic viability of product recovery practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.