Abstract

Orthogonal frequency division multiplexing (OFDM) system with frequency domain equalization (FDE) requires reliable channel estimation (CE). OFDM has a problem of high peak-to-average power ratio (PAPR), which makes it very sensitive to nonlinear distortions, affecting the channel estimation accuracy. In this paper, we investigate the effect of the nonlinearity to the the OFDM system with pilot-assisted CE based on time or frequency division multiplexed (TDM/FDM) pilot. A closed-form bit error rate (BER) expressions for OFDM system are derived in a nonlinear and frequency-selective fading channel. The analysis is based on the Gaussian approximation of the nonlinear noise, which is also confirmed by computer simulation. Our results in terms of BER and mean square error (MSE) show, that FDM-pilot based CE is more sensitive to nonlinear distortions as compared to CE based on TDM-pilot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.