Abstract

In this study, a special class of closed-form solutions for inhomogeneous beam-columns on elastic foundations is investigated. Namely the following problem is considered: find the distribution of the material density and the flexural rigidity of an inhomogeneous beam resting on a variable elastic foundation so that the postulated trigonometric mode shape serves both as vibration and buckling modes. Specifically, for a simply-supported beam on elastic foundation, the harmonically varying vibration mode is postulated and the associated semi-inverse problem is solved that result in the distributions of flexural rigidity that together with a specific law of material density, an axial load distribution and a particular variability of elastic foundation characteristics satisfy the governing eigenvalue problem. The analytical expression for the natural frequencies of the corresponding homogeneous beam-column with a constant characteristic elastic foundation is obtained as a particular case. For comparison the obtained closed-form solution is contrasted with an approximate solution based on an appropriate polynomial shape, serving as trial function in an energy method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.