Abstract

Cooperation is ubiquitous across all levels of biological systems ranging from microbial communities to human societies. It, however, seemingly contradicts the evolutionary theory, since cooperators are exploited by free-riders and thus are disfavored by natural selection. Many studies based on evolutionary game theory have tried to solve the puzzle and figure out the reason why cooperation exists and how it emerges. Network reciprocity is one of the mechanisms to promote cooperation, where nodes refer to individuals and links refer to social relationships. The spatial arrangement of mutant individuals, which refers to the clustering of mutants, plays a key role in network reciprocity. Besides, many other mechanisms supporting cooperation suggest that the clustering of mutants plays an important role in the expansion of mutants. However, the clustering of mutants and the game dynamics are typically coupled. It is still unclear how the clustering of mutants alone alters the evolutionary dynamics. To this end, we employ a minimal model with frequency independent fitness on a circle. It disentangles the clustering of mutants from game dynamics. The distance between two mutants on the circle is adopted as a natural indicator for the clustering of mutants or assortment. We find that the assortment is an amplifier of the selection for the connected mutants compared with the separated ones. Nevertheless, as mutants are separated, the more dispersed mutants are, the greater the chance of invasion is. It gives rise to the non-monotonic effect of clustering, which is counterintuitive. On the other hand, we find that less assortative mutants speed up fixation. Our model shows that the clustering of mutants plays a non-trivial role in fixation, which has emerged even if the game interaction is absent.

Highlights

  • Cooperation is ubiquitous in the natural world ranging from microbial communities to human societies

  • We establish a minimal network model to disentangle the assortment from the game interaction

  • Cooperation plays a key role in all levels of biological systems

Read more

Summary

Introduction

Cooperation is ubiquitous in the natural world ranging from microbial communities to human societies. It is seemingly against evolutionary theory, since cooperators forgo their own interest to benefit others whereas defectors pay nothing to get the benefit. The past two decades have seen an intensive study on how cooperation evolves via natural selection [1,2,3,4,5,6,7,8,9,10]. One of the key mechanisms to promote cooperation is network reciprocity. It assumes that individuals only interact with their neighbors. Either reproduction or competition for survival happens locally, which is not true for evolutionary dynamics in well-mixed population [3,4,5,6,7]

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.