Abstract
A major supply of energy in the rapidly multiplying intraerythrocytic Plasmodium falciparum is from the glycolytic pathway. We have isolated the cDNA and genomic clones of the glycolytic enzyme, triosephosphate isomerase (TPI) by polymerase chain reaction (PCR). Degenerate oligonucleotides obtained by reverse translation of conserved polypeptide sequences derived from TPIs of other organisms, were used to prime PCR on P. falciparum DNA. The P. falciparum TPI gene is interrupted by a single intron which divides the coding region into two exons. The coding region encodes a protein of 248 amino acids which is of the same size as TPIs from other organisms and shares 42—45% homology with other known eukaryotic TPIs. On comparison with human TPI the catalytic domain was found to be highly conserved, while significant variations occurred at the other regions in the protein sequence. The P. falciparum TPI gene was cloned into the expression vector pTrc99A and hyperexpressed as an unfused protein in Escherichia coli. The 28-kDa protein was shown to be catalytically active.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.