Abstract

Fibrillin-2 is an extracellular matrix protein. It is associated with elastic fibers in several tissues and is believed to serve as a ligand for αvβ3 integrin, the latter being a known morphogen. In this study, the role of fibrillin-2 in lung development was investigated. Also, rat fibrillin-2 cDNA was isolated and sequenced and its spatiotemporal expression determined. It had ∼88% homology with human fibrillin-2 and had Ca2+ binding epidermal growth factor-like domains, transforming growth factor-β binding protein motifs, and two RGD binding sites. Northern blot analysis revealed an ∼10-kb transcript, and fibrillin-2 expression was developmentally regulated, and it paralleled that of tropoelastin. At day 13 of gestation, fibrillin-2 was expressed in the mesenchyme and at the epithelial:mesenchymal interface. From day 13 to 19 of gestation, its expression intensified and was confined around the tracheobronchial airways, while it lessened during the postnatal period. Immunoprecipitation revealed an ∼350-kDa band by SDS–PAGE. Treatment with fibrillin-2 antisense oligodeoxynucleotide induced dysmorphogenesis of the lung explants. They were smaller and had rudimentary lung bud branches, collapsed conducting airways, and loose expanded mesenchyme. Concomitantly, fibrillin-2 mRNA, antibody reactivity in the explants, and fibrillin-2-specific radioincorporation were reduced. Anti-αv and -laminin antibody reactivity and their respective incorporated specific radioactivities were unaltered. These data indicate that fibrillin-2 modulates organogenesis of the lung in the context of epithelial:mesenchymal interactions. Conceivably, the collapse of the conducting airways may also be related to the perturbed biology of the fibrillin-2 interacting protein, i.e., elastin, the latter being critical for the normal biophysiology of the lungs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.