Abstract
The transport of D-alanine by Escherichia coli K-12 neither requires nor is stimulated by Na+. The transport of D-alanine by the marine bacterium Alteromonas haloplanktis 214 requires Na+ specifically. Mutants of E. coli which were unable to transport D-alanine were isolated by enrichment for D-cycloserine resistance. One of the mutants was transformed with a gene bank of A. haloplanktis chromosomal DNA. Two transformants, E. coli RM1(pPM1) and E. coli RM1(pPM2) were able to transport D-alanine by a Na+-dependent mechanism. Li+ and K+ were unable to replace Na+. Both transformants contained chimeric plasmids with inserts which hybridized with A. haloplanktis but not E. coli chromosomal DNA or each other. Despite the lack of homology between the inserts, Na+-dependent D-alanine transport in the two transformants could not be distinguished either by kinetic studies or by differences in the capacity of various amino acids to compete for D-alanine uptake.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.