Abstract

The endo-1,4-β-xylanase gene xyn11a from Fusarium oxysporum, member of the fungal glycosyl hydrolase (GH) family 11, was cloned and expressed in Pichia pastoris. The mature xylanase gene, which generates after the excision of one intron and the secreting signal peptide, was placed under the control of an alcohol oxidase promoter (AOX1) in the plasmid pPICZαC. The final construction was integrated into the genome of the methylotrophic yeast P. pastoris X33 and the ability to produce xylanase activity was evaluated in flask cultures. Recombinant P. pastoris efficiently secreted xylanase into the medium and produced high level of enzymatic activity (110 U/ml) after 216 hours of growth, under methanol induction. To achieve higher enzyme production, the influence of initial pH, methanol concentration, agitation and flask design was evaluated. Under optimum culture conditions, production of the recombinant xylanase increased by 50%, reaching a final yield of 170 U/ml, underpinning aeration as the most important factor in improving enzyme production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.