Abstract
Chlorogenic acid (CGA) plays an important role in protecting plants against pathogens and promoting human health. Although CGA accumulates to high levels in potato tubers, the key enzyme p-coumaroyl quinate/shikimate 3′-hydroxylase (C3′H) for CGA biosynthesis has not been isolated and functionally characterized in potato. In this work, we cloned StC3′H from potato and showed that it catalyzed the formation of caffeoylshikimate and CGA (caffeoylquinate) from p-coumaroyl shikimate and p-coumaroyl quinate, respectively, but was inactive towards p-coumaric acid in in vitro enzyme assays. When the expression of StC3′H proteins was blocked through antisense (AS) inhibition under the control of a tuber-specific patatin promoter, moderate changes in tuber yield as well as phenolic metabolites in the core tuber tissue were observed for several AS lines. On the other hand, the AS and control potato lines exhibited similar responses to a bacterial pathogen Pectobacterium carotovorum. These results suggest that StC3′H is implicated in phenolic metabolism in potato. They also suggest that CGA accumulation in the core tissue of potato tubers is an intricately controlled process and that additional C3′H activity may also be involved in CGA biosynthesis in potato.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.