Abstract

In this demo, we propose a novel clock calibration approach called FLIGHT, which leverages the fact that the fluorescent light intensity changes with a stable period that equals half of the alternating current's. By tuning to the light emitted from indoor fluorescent lamps, FLIGHT can intelligently extract the light period information and achieve network wide time calibration by referring to such a common time reference. We address a series of practical challenges and implement FLIGHT in TelosB motes. In this demonstration, we will show that by taking advantage of the stability of the AC frequency, the detected light intensity, even from different lamps, exhibits a consistent and stable period. FLIGHT can achieve tightly synchronized time with low energy consumption. In addition, since FLIGHT is independent to the network message exchange, time synchronization can be retained even when the network is temporarily disconnected. Such characteristics particularly suit various mobility-enabled scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.