Abstract

Gene clusters are genomic loci that contain multiple genes that are functionally and genetically linked. Gene clusters collectively encode diverse functions, including small molecule biosynthesis, nutrient assimilation, metabolite degradation, and production of proteins essential for growth and development. Identifying gene clusters is a powerful tool for small molecule discovery and provides insight into the ecology and evolution of organisms. Current detection algorithms focus on canonical 'core' biosynthetic functions many gene clusters encode, while overlooking uncommon or unknown cluster classes. These overlooked clusters are a potential source of novel natural products and comprise an untold portion of overall gene cluster repertoires. Unbiased, function-agnostic detection algorithms therefore provide an opportunity to reveal novel classes of gene clusters and more precisely define genome organization. We present CLOCI (Co-occurrence Locus and Orthologous Cluster Identifier), an algorithm that identifies gene clusters using multiple proxies of selection for coordinated gene evolution. Our approach generalizes gene cluster detection and gene cluster family circumscription, improves detection of multiple known functional classes, and unveils non-canonical gene clusters. CLOCI is suitable for genome-enabled small molecule mining, and presents an easily tunable approach for delineating gene cluster families and homologous loci.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.