Abstract

The Gila monster Heloderma suspectum is an active forager in an environment that, at times, can be extremely hot and arid. Thus, Gila monsters face extreme thermostatic and hydrostatic demands. For a desert ectotherm routinely risking dehydration, evaporative water loss (EWL) is typically viewed as detrimental. Yet evaporation simultaneously dehydrates and cools an animal. We explored EWL in Gila monsters by measuring cutaneous, ventilatory and cloacal EWL at five ambient temperatures between 20.5 degrees C and 40 degrees C. Our results show that Gila monsters have high EWL rates relative to body mass. Cutaneous EWL underwent a consistent, temperature-dependent increase over the entire range of test temperatures (Q(10)=1.61, with EWL ranging from 0.378 to 0.954 mg g(-1) h(-1)). Ventilatory EWL did not show a significant temperature-dependent response, but ranged from 0.304 to 0.663 mg g(-1) h(-1). Cloacal EWL was extremely low and relatively constant between 20.5 degrees C and 35 degrees C, but rose dramatically above 35 degrees C (Q(10) >8.3 x 10(7), from 0.0008 at 35 degrees C to 7.30 mg g(-1) h(-1) at 40 degrees C). This steep rise in cloacal EWL coincided with an increasing suppression of body temperature relative to ambient temperature. Dehydration to 80% of initial body mass led to a delay in the onset and an attenuation of the dramatic increase in cloacal EWL. These results emphasize the potential value of EWL for thermoregulation in ectotherms and demonstrate for the first time the role of the cloaca in this process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.