Abstract
Major element and rare earth element (REE) partitioning among coexisting clinopyroxene-orthopyroxene pairs from mantle xenoliths of the Assab Range (Ethiopia) are discussed in terms of crystal-chemistry. Major element partitioning indicates relatively uniform conditions of subsolidus equilibration over a narrow range of temperatures (mean value about 1100 C) in the spinel peridotite stability field. Major element distributions and correlations, moreover, seem to indicate that the mantle material studied underwent slightly different depletions prior to the metamorphic equilibration. In spite of the rather homogeneous major element compositions for both cpx and opx, clinopyroxenes show chondrite-normalized REE patterns which are widely variable both in shape and absolute values, whereas orthopyroxenes exhibit more restricted ranges and concordant profiles. REE activity ratios have been investigated by applying Iiyama's ( Bull. Soc. fr. Minéral. Christallogr. 97, 143–151) thermodynamic model: the estimated activity patterns exhibit a good coherence for the different pyroxene pairs, in spite of the contrasting features of their REE concentration ratios. The wide ranges in the measured partition values for the same rare earth element in different pyroxene pairs have been related to coupled substitutions involving A1 in the Z site and REE in the M 2 site of clinopyroxene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.