Abstract
Predictive enrichment strategies use biomarkers to selectively enroll oncology patients into clinical trials to more efficiently demonstrate therapeutic benefit. Because the enriched population differs from the patient population eligible for screening with the biomarker assay, there is potential for bias when estimating clinical utility for the screening eligible population if the selection process is ignored. We write estimators of clinical utility as integrals averaging regression model predictions over the conditional distribution of the biomarker scores defined by the assay cutoff and discuss the conditions under which consistent estimation can be achieved while accounting for some nuances that may arise as the biomarker assay progresses toward a companion diagnostic. We outline and implement a Bayesian approach in estimating these clinical utility measures and use simulations to illustrate performance and the potential biases when estimation naively ignores enrichment. Results suggest that the proposed integral representation of clinical utility in combination with Bayesian methods provide a practical strategy to facilitate cutoff decision-making in this setting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.