Abstract

BackgroundDuring an influenza epidemic prompt diagnosis of influenza is important. This diagnosis however is still essentially based on the interpretation of symptoms and signs by general practitioners. No single symptom is specific enough to be useful in differentiating influenza from other respiratory infections. Our objective is to formulate prediction rules for the diagnosis of influenza with the best diagnostic performance, combining symptoms, signs and context among patients with influenza-like illness.MethodsDuring five consecutive winter periods (2002-2007) 138 sentinel general practitioners sampled (naso- and oropharyngeal swabs) 4597 patients with an influenza-like illness (ILI) and registered their symptoms and signs, general characteristics and contextual information. The samples were analysed by a DirectigenFlu-A&B and RT-PCR tests. 4584 records were useful for further analysis.Starting from the most relevant variables in a Generalized Estimating Equations (GEE) model, we calculated the area under the Receiver Operating Characteristic curve (ROC AUC), sensitivity, specificity and likelihood ratios for positive (LR+) and negative test results (LR-) of single and combined signs, symptoms and context taking into account pre-test and post-test odds.ResultsIn total 52.6% (2409/4584) of the samples were positive for influenza virus: 64% (2066/3212) during and 25% (343/1372) pre/post an influenza epidemic. During and pre/post an influenza epidemic the LR+ of 'previous flu-like contacts', 'coughing', 'expectoration on the first day of illness' and 'body temperature above 37.8°C' is 3.35 (95%CI 2.67-4.03) and 1.34 (95%CI 0.97-1.72), respectively. During and pre/post an influenza epidemic the LR- of 'coughing' and 'a body temperature above 37.8°C' is 0.34 (95%CI 0.27-0.41) and 0.07 (95%CI 0.05-0.08), respectively.ConclusionsRuling out influenza using clinical and contextual information is easier than ruling it in. Outside an influenza epidemic the absence of cough and fever (> 37,8°C) makes influenza 14 times less likely in ILI patients. During an epidemic the presence of 'previous flu-like contacts', cough, 'expectoration on the first day of illness' and fever (>37,8°C) increases the likelihood for influenza threefold. The additional diagnostic value of rapid point of care tests especially for confirming influenza still has to be established.

Highlights

  • During an influenza epidemic prompt diagnosis of influenza is important

  • Since the development of clinical prediction rules systematically combining symptoms and other information might be a more useful strategy[11], the goal of this study is to formulate a prediction rule for influenza in patients presenting with an influenza-like illness (ILI) with the best diagnostic performance in general practice based on the combination of symptoms, signs and contextual information

  • In this last database the mean age was 30 (SE 0.28), the mean number of illness days was 1.8 (SE 0.02) and the mean number of positive symptoms was 8.6 (SE 0.04), and 10% were vaccinated against influenza. 70% (3212/ 4584) of the records were collected during an influenza epidemic and 44% (2036/4584) during an RSV epidemic

Read more

Summary

Introduction

During an influenza epidemic prompt diagnosis of influenza is important. This diagnosis is still essentially based on the interpretation of symptoms and signs by general practitioners. Our objective is to formulate prediction rules for the diagnosis of influenza with the best diagnostic performance, combining symptoms, signs and context among patients with influenza-like illness. During an influenza pandemic prompt diagnosis of influenza is important for the individual patient and society as well. Diagnosing of influenza is still essentially based on the interpretation of symptoms and signs, notwithstanding the growing support of point-ofcare tests. All primary care practitioners and especially members of influenza surveillance systems (Fluview(Ilinet), USA: http://www.cdc.gov/flu/, Euroflu, Europe: http://www. Euroflu.org) need a performing prediction rule to diagnose influenza. A poor relation between these criteria and laboratory confirmed influenza cases has been reported[6,7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.