Abstract

The large variability in tumor appearance and shape makes manual delineation of the clinical target volume (CTV) time-consuming, and the results depend on the oncologists' experience. Whereas deep learning techniques have allowed oncologists to automate the CTV delineation, multi-site tumor analysis is often lacking in the literature. This study aimed to evaluate the deep learning models that automatically contour CTVs of tumors at various sites on computed tomography (CT) images from objective and subjective perspectives. 577 patients were selected for the present study, including nasopharyngeal (n = 34), esophageal (n = 40), breast-conserving surgery (BCS) (left-sided, n = 71; right-sided, n = 71), breast-radical mastectomy (BRM) (left-sided, n = 43; right-sided, n = 37), cervical (radical radiotherapy, n = 45; postoperative, n = 85), prostate (n = 42), and rectal (n = 109) carcinomas. Manually delineated CTV contours by radiation oncologists are served as ground truth. Four models were evaluated: Flexnet, Unet, Vnet, and Segresnet, which are commercially available in the medical product "AccuLearning AI model training platform". The data were divided into the training, validation, and testing set at a ratio of 5:1:4. The geometric metrics, including Dice Similarity Coefficient (DSC) and Hausdorff Distance (HD), were calculated for objective evaluation. For subjective assessment, oncologists rated the segmentation contours of the testing set visually. High correlations were observed between automatic and manual contours. Based on the results of the independent test group, most of the patients achieved satisfactory quantitative results (DSC > 0.8), except for patients with esophageal carcinoma (DSC: 0.62-0.64). The subjective review indicated that 82.65% of predicted CTVs scored either as clinically accepting (8.68%) or requiring minor revision (73.97%), and no patients were scored as rejected. This experimental work demonstrated that auto-generated contours could serve as an initial template to help oncologists save time in CTV delineation. The deep learning-based auto-segmentations achieve acceptable accuracy and show the potential to improve clinical efficiency for radiotherapy of a variety of cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.