Abstract

To describe the clinical commissioning of an in-house artificial intelligence (AI) treatment planning platform for head-and-neck (HN) Intensity Modulated Radiation Therapy (IMRT). The AI planning platform has three components: (1) a graphical user interface (GUI) is built within the framework of a commercial treatment planning system (TPS). The GUI allows AI models to run remotely on a designated workstation configured with GPU acceleration. (2) A template plan is automatically prepared involving both clinical and AI considerations, which include contour evaluation, isocenter placement, and beam/collimator jaw placement. (3) A well-orchestrated suite of AI models predicts optimal fluence maps, which are imported into TPS for dose calculation followed by an optional automatic fine-tuning. Six AI models provide flexible tradeoffs in parotid sparing and Planning Target Volume (PTV)-organ-at-risk (OAR) preferences. Planners could examine the plan dose distribution and make further modifications as clinically needed. The performance of the AI plans was compared to the corresponding clinical plans. The average plan generation time including manual operations was 10-15min per case, with each AI model prediction taking ∼1 s. The six AI plans form a wide range of tradeoff choices between left and right parotids and between PTV and OARs compared with corresponding clinical plans, which correctly reflected their tradeoff designs. The in-house AI IMRT treatment planning platform was developed and is available for clinical use at our institution. The process demonstrates outstanding performance and robustness of the AI platform and provides sufficient validation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.