Abstract

An age-related dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is well recognised in animals, but still remains controversial in humans. There is increasing interest that raised corticosteroid levels, due to activation of the HPA axis, may cause both depressive symptoms and cognitive impairments. Steroid effects on cognition may be via the hippocampus, a major site of corticosteroid action and an important structure involved in learning and memory. To investigate this further, we examined the relationship between the dexamethasone suppression test, cognitive function, depressive symptoms and hippocampal atrophy on magnetic resonance imaging (MRI) in 32 normal controls, 49 subjects with NINCDS/ADRDA Alzheimer's disease and 51 patients with DSM-III-R Major Depression. Controlling for differences in dexamethasone concentrations, post-dexamethasone cortisol levels were related to advancing age in controls and depressed subjects. However, among subjects with Alzheimer's disease, post-dexamethasone cortisol levels were independently associated with both minor depressive symptoms and hippocampal atrophy on MRI. An association between advancing age and increased HPA axis dysregulation is supported for controls and depressed subjects. In Alzheimer's disease, HPA axis changes were associated with depressive symptoms and hippocampal atrophy. Longitudinal studies are now needed to determine the causal direction of these associations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.