Abstract

Guided bone regeneration (GBR) is an effective alveolar ridge reconstruction technique used before or at implant placement. The combination of various barrier membranes and bone substitutes has been employed. This study aimed to perform a preliminarily evaluation of the safety and performance of a new nonabsorbable bi-layered porous polyethylene (PPE) membrane, in combination with a freeze-dried cortical bone allograft in posterior mandibular ridge augmentation. Fifteen adults who had combined posterior mandibular defects were included for ridge augmentation via GBR using PPE membrane and allograft before implant placement. The keratinized mucosa width (KW), ridge width (RW), ridge height (RH), distance from measurement matrix to bone (DMB), and horizontal alveolar width at 14.0 mm apical to the occlusal plane (HAW) were clinically measured at 15 intended implant sites before and after the augmentation. Fifteen biopsy specimens were harvested at the implant sites for histological analysis. All the subjects completed the whole study. The KW and RH showed minor gains by 0.2 ± 1.4 mm and 0.9 ± 2.3 mm respectively; however, no statistically significant differences were found between, before, and after the augmentation (P > 0.05). In contrast, the RW and HAW significantly increased by 4.8 ± 1.6 mm and 2.3 ± 1.7 mm, respectively, (P ≤ 0.001), while DMB significantly decreased by 1.0 ± 0.8 mm after treatment (P < 0.001). Histological analysis revealed that allograft underwent active bone remodeling. The PPE membrane was adequately safe and efficient to use with allograft in GBR for the reconstruction of combined ridge defects. Although some complications were observed, these were manageable and subsequently lead to successful implant placement for all the subjects. However, further randomized controlled trials are still needed to confirm these findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.