Abstract

The hydrogen and oxygen isotope ratios of water, which can be measured by Isotope Ratio Mass Spectrometry (IRMS), exhibit climatic dependencies and are commonly exploited in hydrogeology. More generally, the overall carbon or hydrogen isotope ratios of plant organic matter, and in particular of tree-ring cellulose, have been frequently used for climatic reconstruction. However, since many physicochemical and biochemical fractionation phenomena are likely to contribute to the isotopic values, the interpretation of the climatic significance of isotopic parameters is not always straightforward. In the case of hydrogen and oxygen for instance, the climatic profile of the source meteoric water is not simply transferred to leaf water and many steps of the biosyntheses are accompanied by kinetic and thermodynamic isotope effects that depend on the individual mechanistic pathways. The information brought about by overall isotope ratios determined by IRMS is averaged over all fractionation effects undergone at the different molecular positions. In contrast, the NMR investigation of Site-specific Natural Isotope Fractionation (SNIF-NMR) gives simultaneous access to isotope ratios specific to individual positions in the molecule. Since the different atoms do not necessarily exhibit the same climatic dependency, the method provides complementary responses to the environmental conditions. In particular, the isotopic parameters of ethanol and water obtained by fermenting sugars in standardized conditions reflect climatic influences which took place at different periods of plant growth. As a consequence, statistical analyses based on multi-site isotopic variables provide powerful criteria for distinguishing geographical regions of cultivation characterized by different climatic features. Although the sensitivity to climatic variations is the most pronounced for plant water and for sugars formed at the first step of photosynthesis, other components such as lipids or minor metabolites also exhibit climatic dependencies. The combination of isotopic values pertaining to different atomic species and either averaged over the whole molecule (IRMS) or associated with different molecular sites (SNIF-NMR), provides complementary criteria, which can be exploited in terms of both climatic significance and mechanistic pathways of the individual atoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.