Abstract

ABSTRACTTo explore a new blowing agent for polyurethanes (PUs), palmitic acid was grafted onto a branched polyethyleneimine (bPEI; weight‐average molecular weight = 25,000 Da) via N,N′‐carbonyldiimidazole condensation to form a hydrophobically modified bPEI [palmitic acid grafted branched polyethyleneimine (C16–bPEI)] with a grafting rate of 12%. A CO2 adduct of C16–bPEI, which trapped 16.8% CO2 in it, was synthesized from C16–bPEI. The long alkyl chain grafting improved the dispersibility of the CO2 adduct in the PU raw materials and favored a homogeneous release of CO2 to blow PUs during the exothermic foaming process. The preliminary results show that the foams possessed a density of 72.0 kg/m3 and a compressive strength of 246 kPa; this matched the required values of foams for the thermal insulation of underground steel pipes. This new blowing agent emitted nothing but CO2 to the atmosphere, so it will not promote ozone depletion and will avoid global warming problems that are associated with traditional blowing agents such as chlorofluorocarbons and hydrochloroflourocarbons. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43874.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.