Abstract
Anticosti Island, located in the Gulf of St. Lawrence (GSL; Quebec, Canada) is covered by ~25% peatland ecosystems, and conditions supporting their development remain poorly documented. We present the first reconstructions of the ecohydrological conditions (vegetation successions and water table variations) and related carbon accumulation of two maritime peatlands (Pluvier; PLU and Pointe de l’Est; PTE) located on the eastern part of Anticosti Island. These ombrotrophic peatlands developed under the influence of the GSL sea-surface conditions in interaction with atmospheric circulation during the Holocene. Long-term apparent Rate of Carbon Accumulation (LORCA, g C m−2 a−1) at PLU (13.3) and PTE (16.8) are lower than the mean global value for northern peatlands (22.9), likely due to high wind exposure. Results show that despite the earlier peat inception at PLU (9440 cal a BP) before PTE (6250 cal a BP), the fen-bog transition of both peatlands occurred almost synchronously (4540 and 5070 cal a BP respectively), suggesting favourable hydroclimatic conditions for peat growth. A slowdown in peat accumulation combined with dry and variable hydrological conditions after ca. 3300 cal a BP in the two studied peatlands coincided with the transition from the mid-Holocene to the Neoglacial cooling. At ca. 800 cal a BP, the shift from wet Sphagnum to dry ligneous peat corresponds to the transition from the Medieval Climate Anomaly to the Little Ice Age. Cooling periods, characterized by a decrease in incident solar radiation and the incursion of cold and dry Arctic air masses into the GSL, are marked by a decrease in peat accumulation, especially at PLU, due to its higher wind exposure, which influenced reduced snow cover thickness as well as frost penetration and duration through the peat.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.