Abstract

Abstract A semi-Lagrangian version of the National Center for Atmospheric Research Community Climate Model is developed. Special consideration is given to energy consistency aspects. In particular, approximations are developed in which the pressure gradient in the momentum equations is consistent with the energy conversion term in the thermodynamic equation. In addition, consistency between the discrete continuity equation and the vertical velocity ω in the energy conversion term of the thermodynamic equation is obtained. Simulated states from multiple-year simulations from the semi-Lagrangian and Eulerian versions are compared. The principal difference in the simulated climate appears in the zonal average temperature. The semi-Lagrangian simulation is colder than the Eulerian at and above the tropical tropopause. The terms producing the thermodynamic balance are examined. It is argued that the semi-Lagrangian scheme produces less computational smoothing of the temperature at the tropopause than the first...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.