Abstract
Progressive salinization of water and soil will be increasingly severe in low-lying coastal areas as climate change proceeds. Thus, understanding the economic impacts of salinity intrusion will be essential for effective adaptation planning. This paper uses econometric analysis to predict the impact of climate-induced increases in soil salinity on high-yielding-variety rice production in coastal Bangladesh. Findings indicate an output decline of 15.6 percent in nine subdistricts where soil salinity will exceed 4 deciSiemens per meter before 2050. Without new adaptation strategies, the predicted changes will result in 7.7 and 5.6 percent losses in the Barisal and Chittagong regions, respectively.
Highlights
Progressive salinization of water and soil will be increasingly severe in low-lying coastal areas as climate change proceeds
Among the multiple vulnerabilities low-lying coastal areas face due to climate change, progressive water and soil salinization pose serious threats
Dasgupta et al (2015b) developed location-specific soil salinity projections for 69 upazilas of coastal Bangladesh through 2050 from climate-induced changes in river salinity and projections of rainfall and temperature based on time trends for 20 Bangladesh Meteorological Department weather stations in the coastal region
Summary
Our econometric analysis tests whether or not the yield of HYV rice has been significantly affected by variations in soil salinity across upazilas and over time With those results in hand, we investigate the impact of future salinity increases. We assembled a large panel database that includes previously unavailable information on soil salinity and the yield of HYV rice production in 140 upazilas in four regions of southern Bangladesh: Barisal (38 upazilas), Chittagong (30), Dhaka (13), and Khulna (59).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.