Abstract

In this paper, the impact of climate change on seabed sediment transport in the north-western region of the Australian Exclusive Economic Zone (EEZ) has been investigated by a state-of-the-art numerical sediment transport model, Sedsim. It links the environmental forces and seabed response into a dynamic sedimentation system. Although numerical implementation of some forcing and responses is approximate, it is a significant step forward in understanding the nature of potential long-term seabed changes as well as in evaluating the likely impact of climate change on the northwest Australian continental shelf. It was found that: the modelled high-energy climate change scenario produced 17% and 38% increases on total volumes of seabed transport in the northern and southern part of the Australian northwest region respectively; the Indonesian ThroughFlow (ITF), the Leeuwin Current (LC) and high energy waves (associated with tropical cyclones) play the most important roles in large-scale long-term evolution of the NW seafloor; offshore pipeline design could usefully incorporate the changed risk profiles due to long-term non-stationarity of climate-derived forcing processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.