Abstract

This article reviews Hestenes' work on the Dirac theory, where his main achievement is a real formulation of the theory within thereal Clifford algebra Cl 1,3 ≃ M2 (H). Hestenes invented first in 1966 hisideal spinors $$\phi \in Cl_{1,3 _2}^1 (1 - \gamma _{03} )$$ and later 1967/75 he recognized the importance of hisoperator spinors ψ ∈ Cl ≃ M2 (C). This article starts from the conventional Dirac equation as presented with matrices by Bjorken-Drell. Explicit mappings are given for a passage between Hestenes' operator spinors and Dirac's column spinors. Hestenes' operator spinors are seen to be multiples of even parts of real parts of Dirac spinors (real part in the decompositionC ⊗ Cl 1,3 andnot inC ⊗ M4 (R)=M4 (C)). It will become apparent that the standard matrix formulation contains superfluous parts, which ought to be cut out by Occam's razor. Fierz identities of bilinear covariants are known to be sufficient to study the non-null case but are seen to be insufficient for the null case ψ†γ0ψ=0, ψ†γ0γ0123ψ=0. The null case is thoroughly scrutinized for the first time with a new concept calledboomerang. This permits a new intrinsically geometric classification of spinors. This in turn reveals a new class of spinors which has not been discussed before. This class supplements the spinors of Dirac, Weyl, and Majorana; it describes neither the electron nor the neutron; it is awaiting a physical interpretation and a possible observation. Projection operators P±, Σ± are resettled among their new relatives in End(Cl 1,3 ). Finally, a new mapping, calledtilt, is introduced to enable a transition from Cl 1,3 to the (graded) opposite algebra Cl 3,1 without resorting to complex numbers, that is, not using a replacement γμ →iγμ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.