Cleft extensions of rings and singularity categories
Cleft extensions of rings and singularity categories
30
- 10.1016/j.jalgebra.2015.12.012
- Jan 12, 2016
- Journal of Algebra
83
- 10.21099/tkbjm/1496158797
- Jun 1, 1980
- Tsukuba Journal of Mathematics
628
- 10.1090/s0894-0347-96-00174-9
- Jan 1, 1996
- Journal of the American Mathematical Society
44
- 10.1016/j.jalgebra.2013.09.018
- Oct 2, 2013
- Journal of Algebra
69
- 10.1142/s0219498812500661
- Jul 31, 2012
- Journal of Algebra and Its Applications
8
- 10.1016/j.jpaa.2015.02.009
- Feb 10, 2015
- Journal of Pure and Applied Algebra
9
- 10.1016/0021-8693(76)90078-8
- Mar 1, 1976
- Journal of Algebra
35
- 10.1016/j.jalgebra.2015.05.012
- Jun 3, 2015
- Journal of Algebra
59
- 10.1090/s2330-0000-2014-00004-6
- Nov 6, 2014
- Transactions of the American Mathematical Society, Series B
67
- 10.1090/s0002-9939-2011-10921-3
- May 16, 2011
- Proceedings of the American Mathematical Society
- Research Article
- 10.1007/s40062-021-00289-1
- Aug 18, 2021
- Journal of Homotopy and Related Structures
Let R be a right noetherian ring. We introduce the concept of relative singularity category $$\Delta _{\mathcal {X} }(R)$$ of R with respect to a contravariantly finite subcategory $$\mathcal {X} $$ of $${\text {{mod{-}}}}R.$$ Along with some finiteness conditions on $$\mathcal {X} $$ , we prove that $$\Delta _{\mathcal {X} }(R)$$ is triangle equivalent to a subcategory of the homotopy category $$\mathbb {K} _\mathrm{{ac}}(\mathcal {X} )$$ of exact complexes over $$\mathcal {X} $$ . As an application, a new description of the classical singularity category $$\mathbb {D} _\mathrm{{sg}}(R)$$ is given. The relative singularity categories are applied to lift a stable equivalence between two suitable subcategories of the module categories of two given right noetherian rings to get a singular equivalence between the rings. In different types of rings, including path rings, triangular matrix rings, trivial extension rings and tensor rings, we provide some consequences for their singularity categories.
- Research Article
13
- 10.1016/s0022-4049(99)00091-2
- Jul 1, 2000
- Journal of Pure and Applied Algebra
On the relative homology of cleft extensions of rings and abelian categories
- New
- Research Article
- 10.1016/j.jalgebra.2025.05.008
- Nov 1, 2025
- Journal of Algebra
- New
- Research Article
- 10.1016/j.jalgebra.2025.05.027
- Nov 1, 2025
- Journal of Algebra
- New
- Research Article
- 10.1016/j.jalgebra.2025.06.024
- Nov 1, 2025
- Journal of Algebra
- New
- Research Article
- 10.1016/j.jalgebra.2025.06.010
- Nov 1, 2025
- Journal of Algebra
- New
- Research Article
- 10.1016/j.jalgebra.2025.05.038
- Nov 1, 2025
- Journal of Algebra
- New
- Research Article
- 10.1016/j.jalgebra.2025.05.032
- Nov 1, 2025
- Journal of Algebra
- New
- Research Article
- 10.1016/j.jalgebra.2025.05.016
- Nov 1, 2025
- Journal of Algebra
- New
- Research Article
- 10.1016/s0021-8693(25)00399-0
- Nov 1, 2025
- Journal of Algebra
- New
- Research Article
- 10.1016/j.jalgebra.2025.05.019
- Nov 1, 2025
- Journal of Algebra
- New
- Research Article
- 10.1016/j.jalgebra.2025.05.028
- Nov 1, 2025
- Journal of Algebra
- Ask R Discovery
- Chat PDF
AI summaries and top papers from 250M+ research sources.