Abstract

Majid in [14] and Bespalov in [2] obtain a braided interpretation of Radford’s theorem about Hopf algebras with projection ([19]). In this paper we introduce the notion of H-cleft comodule (module) algebras (coalgebras) for a Hopf algebra H in a braided monoidal category, and we characterize it as crossed products (coproducts). This allows us give very short proofs for know results in our context, and to introduce others stated for the category of R-modules about of Hopf algebra extensions. In particular we give a proof of the result by Bespalov [2] for a braided monoidal category with co(equalizers).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.