Abstract

BackgroundThe mechanical work and the actin-activated ATP kinetics in skeletal muscles are closely associated with two surface loops that are present in the myosin molecule: loop 1 and loop 2. They are located close to the ATP-loop (loop 1), and the actin binding domain (loop 2). In this study we investigated the roles of loops 1 and 2 in the regulation of the load-dependent velocity of actin sliding and ATPase activity. MethodsHeavy meromyosin (HMM) from rabbit skeletal muscle was subjected to limited tryptic proteolysis to obtain fragments containing different amounts of loops 1 and 2. The amino-acid sequences of these fragments were confirmed with quantitative mass-spectrometry. The velocity of actin motility propelled by the HMM fragments was measured using in-vitro motility assays, with varying loads induced by the addition of different concentrations of α-actinin. ResultsThe load-dependent velocity of the myosin-propelled actin motility, and the fraction of actin filaments motility, were decreased in close association with the depletion of loop 1 in the HMM. The ATPase activity was decreased in close association with depletion of loops 1 and 2. ConclusionsLoop 1 is responsible for regulating the load-dependent velocity of actin motility. General significanceMyosin-actin interaction is closely regulated by two flexible loops in the structure of myosin. The results of this study are important for the understanding of the molecular mechanisms of contraction, and therefore the most basic functions of life, such as locomotion, heart beating, and breathing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.