Abstract

We analyzed the sedimentological characteristics and magnetic properties of cores from the three basins of Clear Lake, California, USA, to assess the depositional response to a series of land use changes that occurred in the watershed over the 20th century. Results indicate that distinct and abrupt shifts in particle size, magnetic concentration/mineralogy, and redox conditions occur concurrently with a variety of ecological and chemical changes in lake bed sediments. This coincidence of events occurred around 1927, a datum determined by an abrupt increase in total mercury (Hg) in Clear Lake cores and the known initiation of open-pit Hg mining at the Sulphur Bank Mercury Mine, confirmed by 210Pb dating. Ages below the 1927 horizon were determined by accelerator mass spectrometry on 14C of coarse organic debris. Calculated sedimentation rates below the 1927 datum are approximately 1 mm/yr, whereas rates from 1927 to 2000 are up to an order of magnitude higher, with averages of approximately 3.5-19 mm/yr. In both the Oaks and Upper Arms, the post-1927 co-occurrence of abrupt shifts in magnetic signatures with color differences indicative of changing redox conditions is interpreted to reflect a more oxygenated diagenetic regime and rapid burial of sediment below the depth of sulfate diffusion. Post-1927 in the Oaks Arm, grain size exhibits a gradual coarsening-upward pattern that we attribute to the input of mechanically deposited waste rock related to open-pit mining activities at the mine. In contrast, grain size in the Upper Arm exhibits a gradational fining-upward after 1927 that we interpret as human-induced erosion of fine-grained soils and chemically weathered rocks of the Franciscan Assemblage by heavy earthmoving equipment associated with a road- and home-building boom, exacerbated by stream channel mining and wetlands destruction. The flux of fine-grained sediment into the Upper Arm increased the nutrient load to the lake, and that in turn catalyzed profuse cyanobacterial blooms through the 20th century. The resulting organic biomass, in combination with the increased inorganic sediment supply, contributed to the abrupt increase in sedimentation rate after 1927.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.