Abstract
AbstractIn this paper, we report our results on surface preparation for the growth of epitaxial Si films. Hydrogen passivated surfaces are currently being investigated for application in Si epitaxy to eliminate the high temperature in-situ bake necessary to remove the native oxide. Hydrogen passivation is obtained by a dilute HF dip before the substrate is loaded in the process chamber. However the passivation is partially lost when the HF dip is followed by a water rinse which results in oxygen absorption on the substrate. It was found that the peak oxygen concentration at the epitaxy substrate interface increase by an order of magnitude due to a five minute water rinse. We report here that oxygen and carbon at the epitaxy substrate interface can be desorbed during initial stage of epitaxial growth by reducing epitaxial growth rate. In this work, epitaxial Si films were deposited over a wide range of growth rates obtained by varying Si2H6 flow rates. The peak oxygen concentration decreases by an order of magnitude by changing the growth rate from 3000 to 700Å/kminute for a deposition temperature of 800°C. We believe that at higher growth rates Si overgrows on absorbed oxygen maintaining epitaxial alignment reflected in the good electrical quality of the epitaxial films. However, at low growth rates oxygen has sufficient time to desorb before overgrowth can take place, improving the epitaxy substrate interface quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.