Abstract

We report the highly power-saved electrolytic hydrogen production by electrochemical reforming of methanol–water solutions. Operating conditions are optimized in terms of current efficiency, the stability of electrocatalysts and methanol loss. Energy requirements are also compared with conventional water electrolysis. It has been observed that current efficiency of methanol electrolysis increases with current density, while decreasing with cell temperature. Pt is found to be more effective electrocatalyst for methanol electrolysis in comparison with PtRu since current efficiency and overvoltage in conjunction with stability against dissolution should be taken into account. At high current density of 300 mA cm −2, methanol electrolysis can save more than 65% electrical energy necessary to produce 1 kg of hydrogen compared with water electrolysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.