Abstract

Red mud is a kind of strong alkaline hazardous slag discharged from aluminum metallurgy industry. In this study, the water immersion with high temperature and high pressure was developed for the selective dealkalization from red mud by adding Mg-based additives. The removal efficiency of alkali could reach 92% by using 12% MgCl2 with 9 mL/g at 250 °C for 60 min. The MgCl2 was the most effective leaching reagent to promote the decomposion of cancrinite lattice. The new minerals bearing Mg, i.e., chlorite (Mg5Al2Si3O10(OH)8) and pyrope (Mg3Al2Si3O12) could be formed, which was in favor of transforming the structural alkali into the free alkali by the analysis and validation of XRD and SEM-EDS. The dealkalization process was mainly controlled by chemical reactions according to the analysis of unreacted shrinking core model (USCM) of leaching kinetics. The leaching kinetics equation of 1 - (1 - x)1/3 = 32.2 × exp[4582.6 / T] × t was built and the apparent activation energy of 38.1 kJ/mol was obtained. This method may provide a new and cleaner way for the efficient dealkalization of red mud and a basis for the utilization of leaching residue as the soil amendment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.