Abstract
Liver cancer is one of the most common cancer types globally. However, the acquisition of drug resistance limits the effectiveness of chemotherapy and commonly results in metastasis. Therefore, an effective therapeutic approach to target chemoresistance-associated cellular molecules is imperative. Claudin-1 (CLDN1) has previously been reported to be associated with the development of drug resistance. The present study investigated the effect of CLDN1 on the sensitivity of 5-fluorouracil (5-FU)-resistant liver cancer cells. Firstly, a 5-FU-resistant HepG2 liver cancer cell line (Hep/5FU) was developed by continuous 5-FU treatment. MTT proliferation, Transwell and Matrigel assays indicated that Hep/5FU cells were significantly resistant to 5-FU, and demonstrated increased migration and invasion abilities, compared with parental HepG2 cells. Furthermore, reverse transcription-quantitative polymerase chain reaction and western blot analysis indicated that mRNA and protein expression levels of CLDN1 were significantly increased in Hep/5FU cells, compared with HepG2 cells. CLDN1 was knocked down by transfection with small interference RNA. MTT and Annexin V-fluorescein isothiocyanate/propidium iodide assays demonstrated that CLDN1 silencing significantly inhibits proliferation and enhances apoptosis induced by 5-FU treatment in Hep/5FU cells, compared with non-silenced Hep/5FU cells. Additionally, CLDN1 silencing attenuated the migration and invasion capabilities of Hep/5FU cells. In addition, it was identified that CLDN1 silencing decreased drug resistance by inhibiting autophagy, which was associated with a decrease in the ratio of microtubule-associated protein 1A/1B-light chain 3 (LC3)-II/LC3-I and upregulation of P62. A cell proliferation assay revealed that the addition of autophagy inhibitor 3-methyladenine decreased drug resistance of Hep/5FU cells. By contrast, incubation with the autophagy agonist Rapamycin elevated drug resistance of CLDN1-silenced Hep/5FU cells. In summary, these data indicate that CLDN1 may be a potential target for resensitizing resistant liver cancer HepG2 cells to 5-FU by regulating cell autophagy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.