Abstract

To assess the role claudin-5, an endothelial cell (EC) tight junction protein, plays in establishing basal permeability levels in humans by comparing claudin-5 expression levels in situ and analyzing junctional organization and function in 2 widely used models of cultured ECs, namely human dermal microvascular (HDM)ECs and human umbilical vein (HUV)ECs. By immunofluorescence microscopy, ECs more highly express claudin-5 (but equivalently express vascular endothelial-cadherin) in human dermal capillaries versus postcapillary venules and in umbilical and coronary arteries versus veins, correlating with known segmental differences in tight junction frequencies and permeability barriers. Postconfluent cultured HDMECs express more claudin-5 (but equivalent vascular endothelial-cadherin) and show higher transendothelial electric resistance and lower macromolecular flux than similarly cultured HUVECs. HDMEC junctions are more complex by transmission electron microscopy and show more continuous claudin-5 immunofluorescence than HUVEC junctions. Calcium chelation or dominant negative vascular endothelial-cadherin overexpression decreases transendothelial electric resistance and disrupts junctions in HUVECs, but not in HDMECs. Claudin-5 overexpression in HUVECs fails to increase transendothelial electric resistance or claudin-5 continuity, whereas claudin-5 knockdown in HDMECs, but not in HUVECs, reduces transendothelial electric resistance and increases antibody accessibility to junctional proteins. Claudin-5 expression and junctional organization control HDMEC and arteriolar-capillary paracellular barriers, whereas HUVEC and venular junctions use vascular endothelial-cadherin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.