Abstract
Twitter is a popular microblogging service that enables the users to send and read short text messages. These messages are becoming source to analyze topic trends and identify relations among temporal topics. In this paper, we propose a method to classify the temporal topics on Twitter as a problem of grouping the similar patterns. To provide a starting point for a classification under the same topics, we identify the content word weighting scheme based on Latent Dirichlet Allocation (LDA). And we formulate how the temporal topics in the time window can be classified like peaky topics, constant topics, and periodic topics. We provide different real case studies which show the validity of the proposed method. Evaluations show that the proposed method is useful as a classifying model in the analysis of the temporal topics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of information and communication convergence engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.