Abstract

In most current motor-imagery-based brain-computer interfaces (BCIs), machine learning is carried out in two consecutive stages: feature extraction and feature classification. Feature extraction has focused on automatic learning of spatial filters, with little or no attention being paid to optimization of parameters for temporal filters that still require time-consuming, ad hoc manual tuning. In this paper, we present a new algorithm termed iterative spatio-spectral patterns learning (ISSPL) that employs statistical learning theory to perform automatic learning of spatio-spectral filters. In ISSPL, spectral filters and the classifier are simultaneously parameterized for optimization to achieve good generalization performance. A detailed derivation and theoretical analysis of ISSPL are given. Experimental results on two datasets show that the proposed algorithm can correctly identify the discriminative frequency bands, demonstrating the algorithm's superiority over contemporary approaches in classification performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.