Abstract
ABSTRACTThe exponential growth of natural language text data in social media has contributed a rich data source for geographic information. However, incorporating such data source for GIS analysis faces tremendous challenges as existing GIS data tend to be geometry based while natural language text data tend to rely on natural language spatial relation (NLSR) terms. To alleviate this problem, one critical step is to translate geometric configurations into NLSR terms, but existing methods to date (e.g. mean value or decision tree algorithm) are insufficient to obtain a precise translation. This study addresses this issue by adopting the random forest (RF) algorithm to automatically learn a robust mapping model from a large number of samples and to evaluate the importance of each variable for each NLSR term. Because the semantic similarity of the collected terms reduces the classification accuracy, different grouping schemes of NLSR terms are used, with their influences on classification results being evaluated. The experiment results demonstrate that the learned model can accurately transform geometric configurations into NLSR terms, and that recognizing different groups of terms require different sets of variables. More importantly, the results of variable importance evaluation indicate that the importance of topology types determined by the 9-intersection model is weaker than metric variables in defining NLSR terms, which contrasts to the assertion of ‘topology matters, metric refines’ in existing studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Geographical Information Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.