Abstract
In this age of Big Data, machine learning based data mining methods are extensively used to inspect large scale data sets. Deriving applicable predictive modeling from these type of data sets is a challenging obstacle because of their high complexity. Opportunity with high data availability levels, automated classification of data sets has become a critical and complicated function. In this paper, the power of applying MapReduce based Distributed AdaBoosting of Extreme Learning Machine (ELM) are explored to build reliable predictive bag of classification models. Thus, (i) dataset ensembles are build; (ii) ELM algorithm is used to build weak classification models; and (iii) build a strong classification model from a set of weak classification models. This training model is applied to the publicly available knowledge discovery and data mining datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.