Abstract

Machine learning based computational intelligence methods are widely used to analyze large scale data sets in this age of big data. Extracting useful predictive modeling from these types of data sets is a challenging problem due to their high complexity. Analyzing large amount of streaming data that can be leveraged to derive business value is another complex problem to solve. With high levels of data availability (\textit{i.e. Big Data}) automatic classification of them has become an important and complex task. Hence, we explore the power of applying MapReduce based Distributed AdaBoosting of Extreme Learning Machine (ELM) to build a predictive bag of classification models. Accordingly, (i) data set ensembles are created; (ii) ELM algorithm is used to build weak learners (classifier functions); and (iii) builds a strong learner from a set of weak learners. We applied this training model to the benchmark knowledge discovery and data mining data sets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.